Issue 3, 2022

Mechanistic insights of cycling stability of ferrocene catholytes in aqueous redox flow batteries

Abstract

Water soluble ferrocene (Fc) derivatives are promising cathode materials for aqueous organic redox flow batteries (AORFBs) towards scalable energy storage. However, their structure–performance relationship and degradation mechanism in aqueous electrolytes remain unclear. Herein, physicochemical and electrochemical properties, battery performance, and degradation mechanisms of three Fc catholytes, (ferrocenylmethyl)trimethylammonium chloride (C1-FcNCl), (2-ferrocenyl-ethyl)trimethylammonium chloride (C2-FcNCl), and (3-ferrocenyl-propyl)trimethylammonium chloride (C3-FcNCl) in pH neutral aqueous electrolytes were systemically investigated. UV-Vis and gas chromatography (GC) studies confirmed the thermal and photolytic Cx-Cp ligand dissociation decomposition pathways of both discharged and charged states of C1-FcNCl and C2-FcNCl catholytes. In contrast, in the case of the C3-FcNCl catholyte, the electron-donating 3-(trimethylammonium)propyl group strengthens the coordination between the C3-Cp ligand and the Fe3+ or Fe2+ center and thus mitigates the ligand-dissociation degradation. Consistently, the Fc electrolytes displayed cycling stability in both half-cell and full-cell flow batteries in the order of C1-FcNCl < C2-FcNCl < C3-FcNCl.

Graphical abstract: Mechanistic insights of cycling stability of ferrocene catholytes in aqueous redox flow batteries

Supplementary files

Article information

Article type
Paper
Submitted
16 Oct 2021
Accepted
03 Feb 2022
First published
03 Feb 2022

Energy Environ. Sci., 2022,15, 1315-1324

Mechanistic insights of cycling stability of ferrocene catholytes in aqueous redox flow batteries

J. Luo, M. Hu, W. Wu, B. Yuan and T. L. Liu, Energy Environ. Sci., 2022, 15, 1315 DOI: 10.1039/D1EE03251H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements