Abstract
Aromaticity is a fundamental concept in chemistry, underpinning the properties and reactivity of many organic compounds and materials. The ability to easily and accurately discern aromatic behavior is key to leveraging it as a design element, yet most aromaticity metrics struggle to combine accurate quantitative evaluation, intuitive interpretability, and user-friendliness. We introduce a new method, NICS2BC, which uses simple and inexpensive NICS calculations to generate information-rich and easily-interpreted bond-current graphs. We test the quantitative and qualitative characterizations afforded by NICS2BC for a selection of molecules of varying structural and electronic complexity, to demonstrate its accuracy and ease of analysis. Moreover, we show that NICS2BC successfully identifies ring-current patterns in molecules known to be difficult cases to interpret with NICS and enables deeper understanding of local aromaticity trends, demonstrating that our method adds additional insight.

Please wait while we load your content...