Issue 5, 2022

Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability

Abstract

Organic electrochemistry is receiving renewed attention as a green and cost-efficient synthetic technology. Electrochemical methods promote redox transformations by electron exchange between electrodes and species in solution, thus avoiding the use of stoichiometric amounts of oxidizing or reducing agents. The rapid development of electroorganic synthesis over the past decades has enabled the preparation of molecules of increasing complexity. Redox steps that involve hazardous or waste-generating reagents during the synthesis of active pharmaceutical ingredients or their intermediates can be substituted by electrochemical procedures. In addition to enhance sustainability, increased selectivity toward the target compound has been achieved in some cases. Electroorganic synthesis can be safely and readily scaled up to production quantities. For this pupose, utilization of flow electrolysis cells is fundamental. Despite these advantages, the application of electrochemical methods does not guarantee superior sustainability when compared with conventional protocols. The utilization of large amounts of supporting electrolytes, enviromentally unfriendly solvents or sacrificial electrodes may turn electrochemistry unfavorable in some cases. It is therefore crucial to carefully select and optimize the electrolysis conditions and carry out green metrics analysis of the process to ensure that turning a process electrochemical is advantageous.

Graphical abstract: Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability

Article information

Article type
Feature Article
Submitted
08 Nov 2021
Accepted
17 Dec 2021
First published
17 Dec 2021

Chem. Commun., 2022,58, 619-628

Synthesis of active pharmaceutical ingredients using electrochemical methods: keys to improve sustainability

D. Cantillo, Chem. Commun., 2022, 58, 619 DOI: 10.1039/D1CC06296D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements