Issue 3, 2020

Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers

Abstract

The ternary strategy exhibits great potential in optimizing the photon harvesting and phase separation of active layers. In this work, non-fullerene MF1 was selected as the third component to prepare efficient ternary organic solar cells (OSCs) by finely optimizing the MF1 content in the acceptors. The optimized power conversion efficiency (PCE) of 15.31% is achieved in the ternary OSCs with 20 wt% MF1 content in the acceptors and 100 nm active layer thickness, also exhibiting a relatively high fill factor (FF) of 78.05%. The relatively high FF indicates efficient charge transport and collection in the optimized ternary OSCs, which should be beneficial to achieve efficient thick-film OSCs. It is highlighted that a PCE of 14.57% is achieved in the optimized ternary OSCs with 300 nm thick active layers compatible with the roll-to-roll (R2R) large-scale printing process. To date, high performance thick-film ternary non-fullerene OSCs have seldom been reported. This work indicates that the thick-film ternary strategy has great potential in achieving efficient large-scale OSCs.

Graphical abstract: Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers

Supplementary files

Article information

Article type
Paper
Submitted
13 Dec 2019
Accepted
27 Jan 2020
First published
27 Jan 2020

Energy Environ. Sci., 2020,13, 958-967

Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers

J. Gao, W. Gao, X. Ma, Z. Hu, C. Xu, X. Wang, Q. An, C. Yang, X. Zhang and F. Zhang, Energy Environ. Sci., 2020, 13, 958 DOI: 10.1039/C9EE04020J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements