Issue 6, 2018

CdS-Based photocatalysts

Abstract

To solve the problem of the global energy shortage and the pollution of the environment, in recent years, semiconductor photocatalytic technology that converts solar energy into chemical fuel has been widely studied. Regarding semiconductor-based photocatalysts, CdS has attracted extensive attention due to its relatively narrow bandgap for visible-light response and sufficiently negative potential of the conduction band edge for the reduction of protons. Studies have shown that CdS-based photocatalysts possess excellent photocatalytic performance in terms of solar-fuel generation and environmental purification. This critical review presents the recent advances and progress in the design and synthesis of various CdS and CdS-based photocatalysts. The basic physical and chemical properties of CdS and the related growth mechanism have been briefly summarized. Moreover, the applications of CdS-based photocatalysts have been discussed such as in photocatalytic hydrogen production, reduction of CO2 to hydrocarbon fuels and degradation of pollutants. Finally, a brief perspective on the challenges and future directions for the development of CdS and CdS-based photocatalysts are also presented.

Graphical abstract: CdS-Based photocatalysts

Article information

Article type
Review Article
Submitted
25 Dec 2017
Accepted
28 Mar 2018
First published
28 Mar 2018

Energy Environ. Sci., 2018,11, 1362-1391

CdS-Based photocatalysts

L. Cheng, Q. Xiang, Y. Liao and H. Zhang, Energy Environ. Sci., 2018, 11, 1362 DOI: 10.1039/C7EE03640J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements