Issue 7, 2021

Isotopic study of Raman active phonon modes in β-Ga2O3

Abstract

Holding promising applications in power electronics, the ultra-wide band gap material gallium oxide has emerged as a vital alternative to materials like GaN and SiC. The detailed study of phonon modes in β-Ga2O3 provides insights into fundamental material properties such as crystal structure and orientation and can contribute to the identification of dopants and point defects. We investigate the Raman active phonon modes of β-Ga2O3 in two different oxygen isotope compositions (16O,18O) by experiment and theory: By carrying out polarized micro-Raman spectroscopy measurements on the (010) and ([2 with combining macron]01) planes, we determine the frequencies of all 15 Raman active phonons for both isotopologues. The measured frequencies are compared with the results of density functional perturbation theory (DFPT) calculations. In both cases, we observe a shift of Raman frequencies towards lower energies upon substitution of 16O with 18O. By quantifying the relative frequency shifts of the individual Raman modes, we identify the atomistic origin of all modes (Ga–Ga, Ga–O or O–O) and present the first experimental confirmation of the theoretically calculated energy contributions of O lattice sites to Raman modes. The DFPT results enable the identification of Raman modes that are dominated by the different, inequivalent O- or Ga-atoms of the unit cell. We find that oxygen substitution on the OIII site leads to an elevated relative mode frequency shift compared to OI and OII sites. This study presents a blueprint for the future identification of different point defects in Ga2O3 by Raman spectroscopy.

Graphical abstract: Isotopic study of Raman active phonon modes in β-Ga2O3

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2020
Accepted
10 Jan 2021
First published
11 Jan 2021
This article is Open Access
Creative Commons BY-NC license

J. Mater. Chem. C, 2021,9, 2311-2320

Isotopic study of Raman active phonon modes in β-Ga2O3

B. M. Janzen, P. Mazzolini, R. Gillen, A. Falkenstein, M. Martin, H. Tornatzky, J. Maultzsch, O. Bierwagen and M. R. Wagner, J. Mater. Chem. C, 2021, 9, 2311 DOI: 10.1039/D0TC04101G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements