Issue 8, 2021

Excellent energy storage properties and stability of NaNbO3–Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3

Abstract

NaNbO3-based (NN) energy storage ceramics exhibit high breakdown electric field strength (Eb) with large recoverable energy storage density (Wrec). However, due to their large energy loss density (Wloss) under strong electric fields, maintaining high energy storage efficiency (η) is a challenge. In this study, to produce a dielectric ceramic with both high Wrec and η, a ternary system was designed. By the addition of (Bi0.5Na0.5)0.7Sr0.3TiO3 (BNST), the grain size of 0.90NaNbO3–0.10Bi(Mg0.5Ta0.5)O3 (0.10BMT) was effectively reduced, and the long-range ordered structure was broken, providing an easily turned over dielectric domain to inhibit Wloss. The activation energy of the grain boundary increased with the increase in resistivity, indicating that the concentration of free vacancies at the grain boundary was low. The jump barrier of oxygen vacancies in the grain boundary increased, making up for the grain boundary defects, thus increasing Eb. When the BNST concentration increased, the Eb and Wrec of the dielectric ceramics increased. Optimum performance was obtained with the 0.75[0.90NaNbO3–0.10Bi(Mg0.5Ta0.5)O3]–0.25(Bi0.5Na0.5)0.7Sr0.3TiO3 (0.25BNST) ceramic, which exhibited an exceptionally high Eb (800 kV cm−1) and Wrec (8 J cm−3), while maintaining a relatively high η (90.4%). The ceramics developed in this study showed excellent temperature and frequency stability over 20–200 °C and 1–160 Hz, respectively. In addition, the dielectric properties of the ceramics were maintained after 10 000 hysteresis cycles. The 0.25BNST ceramic showed an exceptionally fast t0.9 (∼32 ns) and a high CD (614.5A cm−2). This study demonstrates that the energy storage performance and stability of the fabricated 0.25BNST ceramic are superior to those of previously reported dielectric ceramics.

Graphical abstract: Excellent energy storage properties and stability of NaNbO3–Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3

Supplementary files

Article information

Article type
Paper
Submitted
11 Nov 2020
Accepted
08 Jan 2021
First published
09 Jan 2021

J. Mater. Chem. A, 2021,9, 4789-4799

Excellent energy storage properties and stability of NaNbO3–Bi(Mg0.5Ta0.5)O3 ceramics by introducing (Bi0.5Na0.5)0.7Sr0.3TiO3

H. Chen, J. Shi, X. Chen, C. Sun, F. Pang, X. Dong, H. Zhang and H. Zhou, J. Mater. Chem. A, 2021, 9, 4789 DOI: 10.1039/D0TA11022A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements