Issue 5, 2021

Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions

Abstract

Ammonia is the main precursor for the production of fertilizers, a hydrogen energy carrier and an emerging clean fuel that plays a crucial role in sustaining life on the globe. Herein, hybrid MoSe2@g-C3N4 micro/nanostructures are described that can serve as photoelectrochemical (PEC) catalysts to fix N2 into NH3 in a basic electrolyte at a low potential (−0.3 V vs. RHE) under ambient conditions. In situ functionalization of the hierarchical micro/nanoflowers of MoSe2 with exfoliated g-C3N4 nanosheets dramatically boosts the faradaic efficiency and yield rate up to 28.91% and 7.72 μmol h−1 cm−2 respectively. The high PEC activity can be attributed to the hierarchical architecture, light-harvesting capability, tunable active sites and formation of heterojunctions, as confirmed by various characterization and density functional theory (DFT) calculations. Therefore, this work not only develops an effective procedure to obtain hierarchical heterojunction catalysts towards a high-efficiency NRR but also provides a deep understanding of artificial N2 fixation at the MoSe2@g-C3N4 interface.

Graphical abstract: Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions

Supplementary files

Article information

Article type
Paper
Submitted
31 Oct 2020
Accepted
16 Dec 2020
First published
16 Dec 2020

J. Mater. Chem. A, 2021,9, 2742-2753

Photoelectrochemical reduction of N2 to NH3 under ambient conditions through hierarchical MoSe2@g-C3N4 heterojunctions

M. A. Mushtaq, M. Arif, X. Fang, G. Yasin, W. Ye, M. Basharat, B. Zhou, S. Yang, S. Ji and D. Yan, J. Mater. Chem. A, 2021, 9, 2742 DOI: 10.1039/D0TA10620H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements