Jump to main content
Jump to site search

Issue 1, 2021
Previous Article Next Article

Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation

Author affiliations

Abstract

Capacitive deionization (CDI) is based on ion electrosorption and has emerged as a promising desalination technology, for example, to obtain drinking water from brackish water. As a next-generation technology, battery desalination uses faradaic processes and, thereby, enables higher desalination capacities and remediation of feed water with high molar strength such as seawater. However, the full use of a large capacity of charge transfer processes is limited by the voltage window of water and the need to use electrode materials non-reactive towards the water. Using our multi-channel bi-electrolyte cell, we now introduce for the first time an alloying electrode for sodium removal in the context of water desalination. Separated by a ceramic sodium superionic conductor (NASICON) membrane, the antimony/carbon composite electrode accomplished sodium removal while chlorine removal is enabled via ion electrosorption with nanoporous carbon (activated carbon cloth). In a sodium-ion battery half-cell setup, the antimony/carbon composite electrode reaches an initial capacity of 714 mA h g−1 at a specific current of 200 mA g−1, which shows a slow but continuous degrading over the course of 80 cycles (426 mA h g−1 in 80th cycle). Our hybrid CDI cell provides a desalination capacity of an average of 294 mgNa gSb−1 (748 mgNaCl gSb−1) with a charge efficiency of ca. 74% in a 600 mM NaCl at a specific current of 200 mA g−1 and a voltage range of −2.0 V to +2.0 V.

Graphical abstract: Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation

Back to tab navigation

Supplementary files

Article information


Submitted
07 Oct 2020
Accepted
24 Nov 2020
First published
25 Nov 2020

J. Mater. Chem. A, 2021,9, 585-596
Article type
Paper

Antimony alloying electrode for high-performance sodium removal: how to use a battery material not stable in aqueous media for saline water remediation

S. Arnold, L. Wang, Ö. Budak, M. Aslan, P. Srimuk and V. Presser, J. Mater. Chem. A, 2021, 9, 585
DOI: 10.1039/D0TA09806J

Social activity

Search articles by author

Spotlight

Advertisements