Issue 40, 2021

Phase behavior in thin films of weakly segregated block copolymer/homopolymer blends

Abstract

We have demonstrated the phase behavior of substrate-supported films of a symmetric weakly segregated polystyrene-block-poly (methyl methacrylate), P(S-b-MMA), block copolymer and its blends with homopolymer polystyrene (PS) at different compositions. Upon increasing the content of added PS in the blends, lamellae (L), perforated layers (PL), double gyroid (DG) and cylinders (C) are obtained in sequence for films. Among these nanodomains, PL and DG only exist in a narrow ϕPS region (ϕPS denotes the volume fraction of PS). At ϕPS = 64%, tuning film thickness and annealing temperature can produce parallel PL or DG with {121}DG lattice planes being parallel to the substrate surface. The effects of annealing temperature and film thickness on the formation of PL and DG are examined. In thin films with n ≈ 3 (n denotes the ratio of initial film thickness to inter-domain spacing), the PL phase solely exists regardless of temperature. However, for thick films with n ≈ 6 and 10, thermal annealing at the most accessible temperature produces films containing both PL and DG of various fractions, but a low temperature tends to favor a greater fraction of PL. The PL phase becomes the only discernible phase if thick films are shortly annealed at 230 °C.

Graphical abstract: Phase behavior in thin films of weakly segregated block copolymer/homopolymer blends

Supplementary files

Article information

Article type
Paper
Submitted
08 Jul 2021
Accepted
07 Sep 2021
First published
09 Sep 2021

Soft Matter, 2021,17, 9189-9197

Phase behavior in thin films of weakly segregated block copolymer/homopolymer blends

J. Hong, J. Chang, I. C. Chang and Y. Sun, Soft Matter, 2021, 17, 9189 DOI: 10.1039/D1SM01005K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements