Issue 41, 2021

Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay

Abstract

Easy fabrication of inorganic clay muscovite (MUS) embedded poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate) (PADH) nanocomposite cryogels with dual temperature/pH dependent catalytic potential was reported. Nanocomposite cryogels were fabricated by a method involving cryogelation and free radical crosslinking of aqueous systems containing MUS ranging from 0% to 1.50% (w/v). The changes in the properties of polybasic PADH networks were investigated to explain how the network parameters and gel properties were affected by the addition of clay, with the formation of a single terpolymer-MUS structure. The potential of the addition of different amounts of MUS to strengthen the prepared terpolymer matrix was investigated by uniaxial compression tests. By lowering the polymerization temperature or increasing the MUS content, the PADH/MUS nanocomposite cryogels became more elastic and compressible with stronger entanglement of terpolymer chains between the clay layers. With the addition of 1.50% (w/v) MUS, the swelling capacity was reduced by 50%, resulting in a two-fold increase in compression elasticity. The nanocomposite gels showed a strong pH-dependence, and when the pH of the swelling medium decreased from 9.8 to 2.1, there was a significant increase in the degree of swelling with increasing protonation of tertiary amine groups. Under an acidic environment, the swelling capacity of the nanocomposite gel containing 1.10% (w/v) MUS increased by 49.5%. In temperature dependent swelling between 15 and 75 °C, all ternary PADH/MUS-Ngels showed a tendency to swell at low and high swelling temperatures, by the predominance of DEAEM units at low temperatures and HEMA monomers at high temperatures, respectively. As the temperature was increased to 55 °C, the swelling decreased and reached a minimum, and then the nanocomposite gels tended to swell again. The obtained results provide an insight into the effect of MUS addition on the properties of poly(alkyl methacrylate)-based ternary nanocomposite gels and demonstrate a simple and efficient way to produce multiple response systems with enhanced elasticity.

Graphical abstract: Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2021
Accepted
13 Sep 2021
First published
14 Sep 2021

Soft Matter, 2021,17, 9371-9386

Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay

N. S. Okten Besli and N. Orakdogen, Soft Matter, 2021, 17, 9371 DOI: 10.1039/D1SM00950H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements