Issue 18, 2021

Long-range order in quadrupolar systems on spherical surfaces

Abstract

The interplay between curvature, confinement and ordering on curved manifolds, with anisotropic interactions between building blocks, takes a central role in many fields of physics. In this paper, we investigate the effects of lattice symmetry and local positional order on orientational ordering in systems of long-range interacting point quadrupoles on a sphere in the zero temperature limit. Locally triangular spherical lattices show long-range ordered quadrupolar configurations only for specific symmetric lattices as strong geometric frustration prevents general global ordering. Conversely, the ground states on Caspar–Klug lattices are more diverse, with many different symmetries depending on the position of quadrupoles within the fundamental domain. We also show that by constraining the quadrupole tilts with respect to the surface normal, which models interactions with the substrate, and by considering general quadrupole tensors, we can manipulate the ground state configuration symmetry.

Graphical abstract: Long-range order in quadrupolar systems on spherical surfaces

Supplementary files

Article information

Article type
Paper
Submitted
12 Feb 2021
Accepted
19 Apr 2021
First published
23 Apr 2021
This article is Open Access
Creative Commons BY-NC license

Soft Matter, 2021,17, 4874-4883

Long-range order in quadrupolar systems on spherical surfaces

A. Gnidovec and S. Čopar, Soft Matter, 2021, 17, 4874 DOI: 10.1039/D1SM00228G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements