Issue 10, 2021

Revealing the deterministic components in active avalanche-like dynamics

Abstract

Avalanche dynamics in an ensemble of self-propelled camphor boats are studied. The self-propelled agents are camphor infused circular paper disks moving on the surface of water. The ensemble exhibits bursts of activity in the autonomous state triggered by stochastic fluctuations. This type of dynamics has been previously reported in a slightly different system (J. Phys. Soc. Jpn., 2015, 84, 034802). Fourier analysis of the autonomous ensemble's average speed reveals a unimodal spectrum, indicating the presence of a preferred time scale in the dynamics. We therefor, entrain such an ensemble by external forcing by using periodic air perturbations on the surface of the water. This forcing is able to replace the stochastic fluctuations which trigger a burst in the autonomous ensemble, thus entraining the system. Upon varying the periodic forcing frequency, an optimal frequency is revealed at which the quality of entrainment of the ensemble by the forcing is augmented. This optimal frequency is found to be in the vicinity of the Fourier spectrum peak of the autonomous ensemble's average speed. This indicates the existence of an underlying deterministic component in the apparent aperiodic bursts of motion of the autonomous ensemble of active particles. A qualitative reasoning for the observed phenomenon is presented.

Graphical abstract: Revealing the deterministic components in active avalanche-like dynamics

Supplementary files

Article information

Article type
Paper
Submitted
10 Nov 2020
Accepted
20 Jan 2021
First published
21 Jan 2021

Soft Matter, 2021,17, 2865-2871

Revealing the deterministic components in active avalanche-like dynamics

I. Tiwari, S. Upadhye, V. S. Akella and P. Parmananda, Soft Matter, 2021, 17, 2865 DOI: 10.1039/D0SM01999B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements