Issue 5, 2021

Impact of the process conditions on polymer pattern morphology during spin coating over topological surfaces

Abstract

Micro and nanofabrication techniques depend on the technology of polymer film casting. Spin coating is a relatively robust method to develop uniform polymer films over the substrate surface. However, polymer casting over a topographically prepatterned surface using the spin coating technique is challenging because of the complex transport phenomena involved in the process. Apart from the substrate wettability and the polymer composition, the geometry of the substrate prepatterns affects the polymer phase separation characteristics and thus the morphology of the polymer pattern. In this work the phase separation dynamics during the spinodal decomposition of a polymer–solvent system in a spin coating process is mathematically investigated. The effect of the prepattern topography, substrate wettability, spin-coating rotational speed, and polymer composition on the phase separation dynamics is investigated. The results reveal that the periodicity and phase difference of the polymer peaks with the topography are dependent on the geometric parameters and substrate wettability. The impact of the rotational motion, on the polymer film, is restricted by the surface roughness (due to the topological prepatterns). On reducing the polymer fraction in the solution, the transition from a uniform coating to film defects to isolated patches (wetting to dewetting) occurs. The surface wettability plays a crucial role in topology directed dewetting, which is not observed in flat substrates.

Graphical abstract: Impact of the process conditions on polymer pattern morphology during spin coating over topological surfaces

Supplementary files

Article information

Article type
Paper
Submitted
07 Sep 2020
Accepted
27 Nov 2020
First published
27 Nov 2020

Soft Matter, 2021,17, 1346-1358

Impact of the process conditions on polymer pattern morphology during spin coating over topological surfaces

S. Mondal, Soft Matter, 2021, 17, 1346 DOI: 10.1039/D0SM01622E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements