Combined electrochemical and DFT investigations of iron selenide: a mechanically bendable solid-state symmetric supercapacitor†
Abstract
Enhancing energy storing capability with the aid of unique nanostructured morphologies is beneficial for the development of high performance supercapacitors. Developing earth abundant and low-cost transition metal selenides (TMSs) with enhanced charge transfer capabilities and good stability is still a challenge. Herein, state of the art for iron selenide with a nanoflake surface architecture, synthesized with the aid of a simple, industry-scalable and ionic layer controlled chemical approach, namely the successive ionic layer adsorption and reaction (SILAR) method, is presented. The iron selenide electrode yields a capacitance of 671.7 F g−1 at 2 mV s−1 scan rate and 434.6 F g−1 at 2 mA cm−2 current density through cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) studies, respectively, with 91.9% cyclic retention at 4000 cycles. The developed bendable solid-state supercapacitor reveals a remarkable power density of 5.1 kW kg−1 with outstanding deformation tolerance, including its use in a practical demo to run a small fan, demonstrating its capability for advanced energy storage applications. A complementary first-principles density functional theory (DFT) approach is used in combination with the experimental supercapacitive performance to achieve an understanding of the electronic structure.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        