Jump to main content
Jump to site search


Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water

Author affiliations

Abstract

Converting CO2 directly from the air to fuel under ambient conditions is a huge challenge. Thus, there is an urgent need for CO2 conversion protocols working at room temperature and atmospheric pressure, preferentially without any external energy input. Herein, we employ magnesium (nanoparticles and bulk), an inexpensive and the eighth-most abundant element, to convert CO2 to methane, methanol and formic acid, using water as the sole hydrogen source. The conversion of CO2 (pure, as well as directly from the air) took place within a few minutes at 300 K and 1 bar, and no external (thermal, photo, or electric) energy was required. Hydrogen was, however, the predominant product as the reaction of water with magnesium was favored over the reaction of CO2 and water with magnesium. A unique cooperative action of Mg, basic magnesium carbonate, CO2, and water enabled this CO2 transformation. If any of the four components was missing, no CO2 conversion took place. The reaction intermediates and the reaction pathway were identified by 13CO2 isotopic labeling, powder X-ray diffraction (PXRD), nuclear magnetic resonance (NMR) and in situ attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and rationalized by density-functional theory (DFT) calculations. During CO2 conversion, Mg was converted to magnesium hydroxide and carbonate, which may be regenerated. Our low-temperature experiments also indicate the future prospect of using this CO2-to-fuel conversion process on the surface of Mars, where CO2, water (ice), and magnesium are abundant. Thus, even though the overall process is non-catalytic, it could serve as a step towards a sustainable CO2 utilization strategy as well as potentially being a first step towards a magnesium-driven civilization on Mars.

Graphical abstract: Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water

Back to tab navigation

Supplementary files

Article information


Submitted
25 Feb 2021
Accepted
19 Mar 2021
First published
31 Mar 2021

This article is Open Access
All publication charges for this article have been paid for by the Royal Society of Chemistry

Chem. Sci., 2021, Advance Article
Article type
Edge Article

Direct CO2 capture and conversion to fuels on magnesium nanoparticles under ambient conditions simply using water

S. A. Rawool, R. Belgamwar, R. Jana, A. Maity, A. Bhumla, N. Yigit, A. Datta, G. Rupprechter and V. Polshettiwar, Chem. Sci., 2021, Advance Article , DOI: 10.1039/D1SC01113H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements