Issue 57, 2021, Issue in Progress

Spin filtering controller induced by phase transitions in fluorographane

Abstract

The electronic and transport properties of fluorographane (C2HF) nanoribbons, i.e., bare (B-C2HF) and hydrogen-passivated (H-C2HF) C2HF nanoribbons, are extensively investigated using first-principles calculations. The results indicate that edge states are present in all the B-C2HF nanoribbons, which are not allowed in the H-C2HF nanoribbons regardless of the directions. The spin splitting phenomenon of band structure only appears in the zigzag direction. This behavior mainly originates from the dehydrogenation operation, which leads to sp2 hybridization at the edge. The H-C2HF nanoribbons are semiconductors with wide band gaps. However, the band gap of B-C2HF nanoribbons is significantly reduced. Remarkably, the phase transition can be induced by the changes in the magnetic coupling at the nanoribbon edges. In addition, the B-C2HF nanoribbons along the zigzag direction show optimal conductivity, which is consistent with the band structures. Furthermore, a perfect spin filtering controller can be achieved by changing the magnetization direction of the edge C atoms. These results may serve as a useful reference for the application of C2HF nanoribbons in spintronic devices.

Graphical abstract: Spin filtering controller induced by phase transitions in fluorographane

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2021
Accepted
26 Oct 2021
First published
04 Nov 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 35718-35725

Spin filtering controller induced by phase transitions in fluorographane

C. Sun, Y. Jiang, Y. Wang, X. Liu, Y. Wu, Y. Ding and G. Zhang, RSC Adv., 2021, 11, 35718 DOI: 10.1039/D1RA07161K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements