Issue 50, 2021

Barium promoted Ni/Sm2O3 catalysts for enhanced CO2 methanation

Abstract

Low temperature CO2 methanation is a favorable pathway to achieve high selectivity to methane while increasing the stability of the catalysts. A Ba promoted Ni/Sm2O3 catalyst was investigated for CO2 methanation at atmospheric pressure with the temperature ranging from 200–450 °C. 5Ni–5Ba/Sm2O3 showed significant enhancement of CO2 conversion particularly at temperatures ≤ 300 °C compared to Ni/Sm2O3. Incorporation of Ba into 5Ni/Sm2O3 improved the basicity of the catalysts and transformed the morphology of Sm2O3 from random structure into uniform groundnut shape nanoparticles. The uniformity of Sm2O3 created interparticle porosity that may be responsible for efficient heat transfer during a long catalytic reaction. Ba is also postulated to catalyze oxygen vacancy formation on Sm2O3 under a reducing environment presumably via isomorphic substitution. The disappearance of a high temperature (∼600 °C) reduction peak in H2-TPR analysis revealed the reducibility of NiO following impregnation with Ba. However, further increasing the Ba loading to 15% formed BaNiO3–BaNiO2.36 phases which consequently reduced the activity of the Ni–Ba/Sm2O3 catalyst at low temperature. Ni was suggested to segregate from BaNiO3–BaNiO2.36 at high temperature thus exhibiting comparable activity with Ni/Sm2O3 at 450 °C.

Graphical abstract: Barium promoted Ni/Sm2O3 catalysts for enhanced CO2 methanation

Article information

Article type
Paper
Submitted
27 May 2021
Accepted
14 Sep 2021
First published
27 Sep 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 31807-31816

Barium promoted Ni/Sm2O3 catalysts for enhanced CO2 methanation

N. A. Ayub, H. Bahruji and A. H. Mahadi, RSC Adv., 2021, 11, 31807 DOI: 10.1039/D1RA04115K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements