Issue 50, 2021

Molecular insight into carbon dioxide hydrate formation from saline solution

Abstract

Carbon dioxide hydrate has been intensively investigated in recent years because of its potential use as gas and heat storage materials. To understand the hydrate formation mechanisms, the crystallization of CO2 hydrate from NaCl solutions was simulated at a molecular level. The influence of temperature, pressure, salt concentration and CO2 concentration on CO2 hydrate formation was evaluated. Results showed that the amount of the newly formed hydrate cages pressure went through a fast linear growth period followed by a relatively stable period. Pressure had little effect on CO2 hydrate formation and temperature had a significant influence. The linear growth rate was greatly reduced as the temperature dropped from 255 to 235 K. The salt ion pairs could inhibit CO2 hydrate formation, suggesting that we should choose the lower salinity areas if we want to storage CO2 as gas hydrates in the seabed sediments. The observations in this study can provide theoretical support for the micro mechanism of hydrate formation, and provide a theoretical reference for the technology of hydrate based CO2 storage.

Graphical abstract: Molecular insight into carbon dioxide hydrate formation from saline solution

Article information

Article type
Paper
Submitted
23 May 2021
Accepted
15 Sep 2021
First published
24 Sep 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 31583-31589

Molecular insight into carbon dioxide hydrate formation from saline solution

C. Liu, X. Zhou and D. Liang, RSC Adv., 2021, 11, 31583 DOI: 10.1039/D1RA04015D

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements