Issue 35, 2021

Remarkable damage in talc caused by electron beam irradiation with a dose of up to 1000 kGy: lattice shrinkage in the Z- and Y-axis and corresponding intrinsic microstructural transformation process speculation

Abstract

To reduce the polluted areas caused by the migration of radioactive or toxic matter, a clear understanding of soil matrix stability, especially the lattice, is essential under irradiation conditions like those of β-ray irradiation. In reality, the matrix of soil or clay is silicate, with talc being one of the most simple species with a similar structure to that matter, exhibiting “2 : 1” stacking and a complete crystal. Therefore, in this work, it was irradiated by an electron beam in air with dose up to 1000 kGy. Then, variations in lattice and the intrinsic microstructural transformation process, especially in terms of defect formation and transformation, were explored. The main results show that irradiation led to talc lattice plane shrinkage and amorphization. Shrinkage and amorphization levels in the Z-axis were more serious than those in the Y-axis. For a 1000 kGy-irradiated sample, the shrinkage level of the (002) lattice plane was close to 2% near 0.2 Å and that of (020) was close to 1.3% near 0.06 Å. Variation in the (002) lattice plane was more obvious than that of (020). The main mechanisms involve the cleavage of tetrahedral Si–O and linkage of tetrahedra and octahedra. Tetrahedral Si–O cleavage was visible, leading to serious amorphization. Nevertheless, lattice plane shrinkage, especially in the Z-axis, was mainly caused by linkage cleavage in this direction. In addition to linkage cleavage, dehydroxylation and H2O volatilization occurred, coupled with H2O radiolysis. Nevertheless, those factors are secondary to lattice variation.

Graphical abstract: Remarkable damage in talc caused by electron beam irradiation with a dose of up to 1000 kGy: lattice shrinkage in the Z- and Y-axis and corresponding intrinsic microstructural transformation process speculation

Article information

Article type
Paper
Submitted
23 May 2021
Accepted
31 May 2021
First published
21 Jun 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 21870-21884

Remarkable damage in talc caused by electron beam irradiation with a dose of up to 1000 kGy: lattice shrinkage in the Z- and Y-axis and corresponding intrinsic microstructural transformation process speculation

X. Huang, J. Li, X. Su, K. Fang, Z. Wang, L. Liu, H. Wang, C. Yang and X. Wang, RSC Adv., 2021, 11, 21870 DOI: 10.1039/D1RA04012J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements