Issue 21, 2021

Synthesis and characterization of an electron-deficient conjugated polymer based on pyridine-flanked diketopyrrolopyrrole

Abstract

As classic organic dyes, diketopyrrolopyrrole (DPP) derivatives have attracted researchers' attention due to their high charge carrier mobility and good environmental stability. In our study, the pyridine-flanked diketopyrrolopyrrole (PyDPP) with a large conjugated system and 2,2′-bithiazole were used to design and synthesize an all-acceptor (A–A) polymer, poly-(dipyridinyldiketopyrrolopyrrole-bithiazole), named P(PyDPP2OD-2Tz). At the same time, poly-(dipyridinyldiketopyrrolopyrrole-bithiophene), P(PyDPP2OD-2T), was synthesized for comparison and discussion. The A–A polymer P(PyDPP2OD-2Tz) synthesized in our research had a highest occupied molecular orbital (HOMO) energy level of −5.85 eV, and a lowest unoccupied molecular orbital (LUMO) energy level of −3.65 eV. Its energy band gap was 2.20 eV, which was similar to P(PyDPP2OD-2T). At the same time, measurement of a series of performance characterizations proved that the polymer P(PyDPP2OD-2Tz) had good thermal stability. It was judged to be an amorphous polymer with a wide distribution of glassy regions. Based on the above advantages, it is expected to increase the carrier mobility of polymer P(PyDPP2OD-2Tz), and improve its device performance as an n-type organic semiconductor material applied to organic field effect transistors, and find new designs for the development of organic functional materials science ideas.

Graphical abstract: Synthesis and characterization of an electron-deficient conjugated polymer based on pyridine-flanked diketopyrrolopyrrole

Supplementary files

Article information

Article type
Paper
Submitted
29 Jan 2021
Accepted
30 Mar 2021
First published
06 Apr 2021
This article is Open Access
Creative Commons BY-NC license

RSC Adv., 2021,11, 12995-13003

Synthesis and characterization of an electron-deficient conjugated polymer based on pyridine-flanked diketopyrrolopyrrole

J. Yang, L. Yang, Q. Chen, K. Guo and J. Han, RSC Adv., 2021, 11, 12995 DOI: 10.1039/D1RA00779C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements