Jump to main content
Jump to site search

Issue 2, 2021
Previous Article Next Article

Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria

Author affiliations

Abstract

Treating bacterial infections with species demonstrating antibiotic resistance to the chosen antibiotic is often hindered due to the ability of certain bacteria to grow biofilms where they can effectively hide and resist the antibiotic action. We report an innovative solution for overcoming both antibiotic resistance and biofilm formation by designing active antibiotic nanocarriers with protease surface functionality. We show that this active nanocarrier of common antibiotics can efficiently degrade biofilms of resistant bacteria and bypass their defences. The cationic protease coating, whilst allowing electrostatic adhesion of the nanoparticle to the cell, simultaneously also degrades the biofilm and helps the active nanocarriers to reach the entrapped bacterial cells. We demonstrated this concept by encapsulating Penicillin G and Oxacillin into shellac nanoparticles, subsequently coated with a serine endo-peptidase protease, Alcalase 2.4 L FG. We show for the first time that these active nanocarriers can destroy biofilms of S. aureus resistant to Penicillin G and are significantly more effective in killing the bacterial cells within compared to an equivalent concentration of free antibiotic. The approach of concentrating the antibiotic by encapsulating it into a nanocarrier allows a localised delivery of the antibiotic to the anionic cell wall, facilitated by coating the NPs with a cationic protease. This approach allowed the antibiotic to restore its effectiveness against S. aureus, characterised as resistant to the same antibiotic as well as to cause a rapid degradation of the bacterial biofilm. This approach could be potentially used to revive old antibiotics which have already limited clinical use due to developed resistance.

Graphical abstract: Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria

Back to tab navigation

Supplementary files

Article information


Submitted
27 Oct 2020
Accepted
15 Nov 2020
First published
07 Dec 2020

This article is Open Access

Mater. Chem. Front., 2021,5, 961-972
Article type
Research Article

Smart active antibiotic nanocarriers with protease surface functionality can overcome biofilms of resistant bacteria

P. J. Weldrick, M. J. Hardman and V. N. Paunov, Mater. Chem. Front., 2021, 5, 961
DOI: 10.1039/D0QM00874E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements