Jump to main content
Jump to site search

Issue 11, 2021
Previous Article Next Article

The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks

Author affiliations

Abstract

Covalent adaptable networks (CANs) are a rising type of polymeric materials that consist of covalently crosslinked polymer chains, but with the inclusion of dynamic covalent bonds, and that can perform bond exchange reactions under equilibrium control. The dynamic behaviour of these exchange reactions within a polymer matrix has been established to be a key parameter in the control of the material properties. Therefore, in order to fully control the macroscopic material properties of CANs, understanding the underlying molecular exchange processes of these dynamic covalent bonds is essential. In this work, we studied the effect of polarity in polyimine-based CANs, and considered not only the network response itself, but also the – so far often overlooked – effect on the exchange dynamics. By combining results from kinetic studies and material analysis we were firstly able to show a distinct correlation between the presence of polar domains in the molecular structure and the thermal and dynamic mechanical properties of the materials. More importantly, the presence of polar domains also greatly affected the exchange kinetics of the dynamic imine bonds. On the molecular level, we showed that the imine exchange could be greatly enhanced (up to 20 times) when polar groups were present near the reactive imine species. As a result, in our polymer materials we established a tuneable range of phase transition temperatures from glass-to-rubber and rubber-to-liquid over roughly 100 °C as a result of either presence or absence of polar groups in the polymer matrix. Furthermore, detailed analysis in the stress relaxation behaviour of the polyimine materials revealed three relaxation processes, which we could attribute to the relaxation in network topology, to the imine exchange on a local level, and to the imine exchange as a result of diffusion through the polymer network. From this analysis we were also able to illustrate the effect of polarity on the polymer network to each of the three relaxation mechanisms.

Graphical abstract: The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks

Back to tab navigation

Supplementary files

Article information


Submitted
09 Nov 2020
Accepted
09 Dec 2020
First published
09 Dec 2020

This article is Open Access

Polym. Chem., 2021,12, 1635-1642
Article type
Paper

The effect of polarity on the molecular exchange dynamics in imine-based covalent adaptable networks

S. K. Schoustra, T. Groeneveld and M. M. J. Smulders, Polym. Chem., 2021, 12, 1635
DOI: 10.1039/D0PY01555E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements