Jump to main content
Jump to site search


Controlled ring-opening polymerization of N-(3-tert-butoxy-3-oxopropyl) glycine derived N-carboxyanhydrides towards well-defined peptoid-based polyacids

Author affiliations

Abstract

Polypeptoids bearing carboxylic acid groups on the N-substituent are useful building blocks for the construction of peptidomimetic supramolecular assemblies with stimuli-responsive properties. Towards this end, N-(3-tert-butoxy-3-oxopropyl) glycine derived N-carboxyanhydride (tBuO2Pr-NCA) has been successfully synthesized and polymerized using primary amine initiators to produce the corresponding poly(N-(3-tert-butoxy-3-oxopropyl) glycine) with molecular weights (Mn) of 5.6–59 kg mol−1 and a narrow molecular weight distribution (PDI = 1.003–1.026). The polymerization was shown to proceed in a controlled manner, evidenced by the good agreement of the experimental molecular weight (Mn) with theoretical values and narrow molecular weight distribution in a wide range of monomer-to-initiator ratios ([M]0 : [I]0 = 25 : 1–200 : 1), the linear increase of Mn with conversion and the second-order polymerization kinetics. The cloaked carboxyl groups on the poly(N-(3-tert-butoxy-3-oxopropyl) glycine) can be readily unveiled in mild acidic conditions to yield the poly(N-(2-carboxyethyl) glycine), a structural mimic of poly(glutamic acid). The poly(N-(2-carboxyethyl) glycine) polymer is a weak polyelectrolyte whose hydrodynamic size in water can be controlled by the solution pH.

Graphical abstract: Controlled ring-opening polymerization of N-(3-tert-butoxy-3-oxopropyl) glycine derived N-carboxyanhydrides towards well-defined peptoid-based polyacids

Back to tab navigation

Supplementary files

Article information


Submitted
01 Oct 2020
Accepted
04 Jan 2021
First published
05 Jan 2021

Polym. Chem., 2021, Advance Article
Article type
Paper

Controlled ring-opening polymerization of N-(3-tert-butoxy-3-oxopropyl) glycine derived N-carboxyanhydrides towards well-defined peptoid-based polyacids

B. N. Barrett, G. L. Sternhagen and D. Zhang, Polym. Chem., 2021, Advance Article , DOI: 10.1039/D0PY01395A

Social activity

Search articles by author

Spotlight

Advertisements