Issue 15, 2021

Copper-catalyzed [3 + 2]-cycloaddition of α-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles

Abstract

An efficient route for the synthesis of multifunctionalized pyrrolidines based on copper-catalyzed diastereoselective [3 + 2]-cycloaddition of nitroalkenes with azomethine ylides was developed. Novel fluorinated heterocycles – β-fluoro-β-nitropyrrolidines – were accessed via this method. The products can be prepared in good to excellent yields and with high diastereoselectivity. Subsequent transformations of pyrrolidines including oxidative aromatization into fluorinated pyrrolines and medicinally attractive β-fluoro-NH-pyrroles as well as chemoselective reduction reactions were demonstrated. Application of the developed procedures for the non-fluorinated analogues was demonstrated to lead to various β-substituted pyrrole derivatives.

Graphical abstract: Copper-catalyzed [3 + 2]-cycloaddition of α-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles

Supplementary files

Article information

Article type
Paper
Submitted
25 Jan 2021
Accepted
19 Mar 2021
First published
19 Mar 2021

Org. Biomol. Chem., 2021,19, 3413-3427

Copper-catalyzed [3 + 2]-cycloaddition of α-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles

V. A. Motornov, A. A. Tabolin, Y. V. Nelyubina, V. G. Nenajdenko and S. L. Ioffe, Org. Biomol. Chem., 2021, 19, 3413 DOI: 10.1039/D1OB00146A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements