Recent advances in aminative difunctionalization of alkenes
Abstract
Alkenes are versatile building blocks in modern organic synthesis. In the difunctionalization reactions of alkenes, two functional groups can be simultaneously introduced into the π system. This is an efficient strategy for the synthesis of multifunctional compounds with complex structures and has the advantages of atom and step economy. Nitrogen-containing organic compounds are widely found in natural products and synthetic compounds, such as dyes, pesticides, medicines, artificial resins, and so on. Many natural products with high biological activity and a broad range of drugs have nitrogen-containing functional groups. The research on the construction methods of C–N bonds has always been one of the most important tasks in organic synthesis, especially in drug synthesis, and the synthetic methods starting from simple and easily available raw materials have been a topic of interest to chemists. The aminative difunctionalization of alkenes can efficiently construct C–N bonds, and at the same time, prepare some compounds that usually require multiple steps of reaction. It is one of the most effective strategies for the simple and efficient synthesis of functionalized nitrogen-containing compounds. This review outlines the major developments focusing on the transition metal-catalyzed or metal-free diamination, aminohalogenation, aminocarbonation, amino-oxidation and aminoboronation reactions of alkenes from 2015–2020.
- This article is part of the themed collection: Synthetic methodology in OBC