Stimuli-responsive hydrogel microcapsules for the amplified detection of microRNAs†
Abstract
A method for the synthesis of DNA-based acrylamide hydrogel microcapsules loaded with quantum dots as a readout signal is introduced. The shell of DNA–acrylamide hydrogel microcapsules is encoded with microRNA-responsive functionalities, being capable of the detection of cancer-associated microRNA. The microRNA-141 (miR-141), a potential biomarker in prostate cancer, was employed as a model target in the microcapsular biosensor. The sensing principle of the microcapsular biosensor is based on the competitive sequence displacement of target miR-141 with the bridging DNA in the microcapsule's shell, leading to the unlocking of DNA–acrylamide hydrogel microcapsules and the release of the readout signal provided by fluorescent quantum dots. The readout signal is intensified as the concentration of miR-141 increases. While miR-141 was directly measured by DNA–acrylamide hydrogel microcapsules, the linear range for the detection of miR-141 is 2.5 to 50 μM and the limit of detection is 1.69 μM. To improve the sensitivity of the microcapsular biosensor for clinical needs, the isothermal strand displacement polymerization/nicking amplification machinery (SDP/NA) process was coupled to the DNA–acrylamide hydrogel microcapsule sensor for the microRNA detection. The linear range for the detection of miR-141 is improved to the range of 102 to 105 pM and the limit of detection is 44.9 pM. Compared to direct microcapsular biosensing, the detection limit for miR-141 by microcapsules coupled with strand-displacement amplification is enhanced by four orders of magnitude.