Issue 40, 2021

Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy

Abstract

Monolayer transition metal dichalcogenide quantum dots (TMDC QDs) could exhibit unique photophysical properties, because of both lateral quantum confinement effect and edge effect. However, there is little fundamental study on the quantum-confined exciton dynamics in monolayer TMDC QDs, to date. Here, by selective excitations of monolayer WS2 QDs in broadband transient absorption (TA) spectroscopy experiments, the excitation-wavelength-dependent ground state bleaching signals corresponding to the quantum-confined exciton states are directly observed. Compared to the time-resolved photophysical properties of WS2 nanosheets, the selected monolayer WS2 QDs only show one ground state bleaching peak with larger initial values for the linear polarization anisotropy of band-edge excitons, probably due to the expired spin–orbit coupling. This suggests a complete change of the band structure for monolayer WS2 QDs. In the femtosecond time-resolved circular polarization anisotropy experiments, a valley depolarization time of ∼100 fs is observed for WS2 nanosheets at room temperature, which is not observed for monolayer WS2 QDs. Our findings suggest a strong state-mixing of band-edge valley excitons responsible for the large linear polarization in monolayer WS2 QDs, which could be helpful for understanding the exciton relaxation mechanisms in colloidal monolayer TMDC QDs.

Graphical abstract: Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2021
Accepted
17 Sep 2021
First published
17 Sep 2021

Nanoscale, 2021,13, 17093-17100

Observation of quantum-confined exciton states in monolayer WS2 quantum dots by ultrafast spectroscopy

S. Zheng, L. Wang, H. Wang, C. Xu, Y. Luo and H. Sun, Nanoscale, 2021, 13, 17093 DOI: 10.1039/D1NR04868F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements