Issue 34, 2021

Surface morphology controls water dissociation on hydrated IrO2 nanoparticles

Abstract

Iridium oxide is a highly efficient catalyst for the oxygen evolution reaction, whose large-scale application requires decreasing the metal content. This is achieved using small nanoparticles. The knowledge of the water–IrO2 nanoparticle interface is of high importance to understand the IrO2 behavior as electrocatalyst in aqueous solutions. In this contribution, DFT (PBE-D2) calculations and AIMD simulations on IrO2 nanoparticle models of different sizes ((IrO2)33 and (IrO2)115) are performed. Results show that two key factors determine the H2O adsorption energy and the preferred adsorption structure (molecular or dissociated water): metal coordination and hydrogen bonding with oxygen bridge atoms of the IrO2 surface. Regarding metal coordination, and since the tetragonal distortion existing in IrO2 is retained on the nanoparticle models, the adsorption at iridium axial vacant sites implies stronger Ir–H2O interactions, which favors water dissociation. In contrast, Ir–H2O interaction at equatorial vacant sites is weaker and thus the relative stability of molecular and dissociated forms becomes similar. Hydrogen bonding increases adsorption energy and favors water dissociation. Thus, tip and corner sites of the nanoparticle, with no oxygen bridge atoms nearby, exhibit the smallest adsorption energies and a preference for the molecular form. Overall, the presence of rather isolated tip and corner sites in the nanoparticle leads to lower adsorption energies and a smaller degree of water dissociation when compared with extended surfaces.

Graphical abstract: Surface morphology controls water dissociation on hydrated IrO2 nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
04 Jun 2021
Accepted
07 Aug 2021
First published
09 Aug 2021

Nanoscale, 2021,13, 14480-14489

Surface morphology controls water dissociation on hydrated IrO2 nanoparticles

D. González, M. Sodupe, L. Rodríguez-Santiago and X. Solans-Monfort, Nanoscale, 2021, 13, 14480 DOI: 10.1039/D1NR03592D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements