Jump to main content
Jump to site search

Issue 19, 2021
Previous Article Next Article

Air-stable and efficient electron doping of monolayer MoS2 by salt–crown ether treatment

Author affiliations

Abstract

To maximize the potential of transition-metal dichalcogenides (TMDCs) in device applications, the development of a sophisticated technique for stable and highly efficient carrier doping is critical. Here, we report the efficient n-type doping of monolayer MoS2 using KOH/benzo-18-crown-6, resulting in a doped TMDC that is air-stable. MoS2 field-effect transistors show an increase in on-current of three orders of magnitude and degenerate the n-type behaviour with high air-stability for ∼1 month as the dopant concentration increases. Transport measurements indicate a high electron density of 3.4 × 1013 cm−2 and metallic-type temperature dependence for highly doped MoS2. First-principles calculations support electron doping via surface charge transfer from the K/benzo-18-crown-6 complex to monolayer MoS2. Patterned doping is demonstrated to improve the contact resistance in MoS2-based devices.

Graphical abstract: Air-stable and efficient electron doping of monolayer MoS2 by salt–crown ether treatment

Back to tab navigation

Supplementary files

Article information


Submitted
26 Feb 2021
Accepted
13 Apr 2021
First published
15 Apr 2021

This article is Open Access

Nanoscale, 2021,13, 8784-8789
Article type
Communication

Air-stable and efficient electron doping of monolayer MoS2 by salt–crown ether treatment

H. Ogura, M. Kaneda, Y. Nakanishi, Y. Nonoguchi, J. Pu, M. Ohfuchi, T. Irisawa, H. E. Lim, T. Endo, K. Yanagi, T. Takenobu and Y. Miyata, Nanoscale, 2021, 13, 8784
DOI: 10.1039/D1NR01279G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements