Jump to main content
Jump to site search

Issue 19, 2021
Previous Article Next Article

Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction

Author affiliations

Abstract

The widespread occurrence of microplastics (MPLs) and nanoplastics (NPLs), collectively abbreviated as M/NPLs, has markedly affected the ecosystem and has become a global threat to human health. Multiple investigations have shown that the chronic ingestion of M/NPLs negatively affects gut barrier function but the mechanism remains unclear. Herein, this research has investigated the toxic effects of pristine polystyrene (PS) M/NPLs, negatively charged carboxylated polystyrene M/NPLs (PS-COOH) and positively charged aminated polystyrene M/NPLs (PS-NH2) of two sizes (70 nm and 5 μm in diameter) in mice. Gavage of these PS M/NPLs for 28 days caused obvious injuries to the gut tract, leading to the decreased expression of tight junction proteins. The toxicity of the M/NPLs was ranked as PS-NH2 > PS-COOH > pristine PS. Oral administration of these M/NPLs resulted in marked gut microbiota dysbiosis. The M/NPLs-enriched genera generally contained opportunistic pathogens which are accompanied by a deteriorated intestinal barrier function, while most M/NPLs-decreased bacteria were beneficial microbes with known tight junction-promoting functions, implicating an important indirect toxic effect of gut microbiota dysbiosis in M/NPLs-induced gut barrier dysfunction. In conclusion, this research highlights the importance of gut microbiota in the toxicity of M/NPLs exposure on gut barrier function, providing novel insights into the adverse effects of M/NPLs exposure on human health.

Graphical abstract: Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction

Back to tab navigation

Supplementary files

Article information


Submitted
04 Jan 2021
Accepted
06 Apr 2021
First published
07 Apr 2021

Nanoscale, 2021,13, 8806-8816
Article type
Paper

Perturbation of gut microbiota plays an important role in micro/nanoplastics-induced gut barrier dysfunction

J. Qiao, R. Chen, M. Wang, R. Bai, X. Cui, Y. Liu, C. Wu and C. Chen, Nanoscale, 2021, 13, 8806
DOI: 10.1039/D1NR00038A

Social activity

Search articles by author

Spotlight

Advertisements