Nanoscale light- and voltage-induced lattice strain in perovskite thin films†
Abstract
We report on localized nonlinear lattice deformation and nanoscale structural rearrangement in methylammonium lead triiodide films triggered by the combined action of light and voltage. These effects, revealed by second harmonic piezoresponse force microscopy, are connected with organic cation motion, implicating localized cation migration as a key contributor to perovskite optoelectronic device instability under operating conditions.