Issue 5, 2021

Enhancing the hydrogen evolution activity of MoS2 basal planes and edges using tunable carbon-based supports

Abstract

The hydrogen adsorption free energy (ΔGHads) on the basal plane and edges of MoS2 is studied using periodic density functional theory, with the catalyst supported by a range of two-dimensional carbon-based materials. Understanding how ΔGHads can be tuned with support gives insight into MoS2 as a catalyst for the hydrogen evolution reaction. The supports studied here include graphene oxide materials, heteroatom doped (S, B, and N) graphene, and some insulator materials (hexagonal boron nitride and graphitic carbon nitride). For the basal plane of MoS2, a wide range of values for ΔGHads are observed (between 1.4 and 2.2 eV) depending on the support material used. It is found that ΔGHads relates directly to the energy of occupied p-orbital states in the MoS2 catalyst, which is modified by the support material. On the Mo-edge of MoS2, different supports induce smaller variations in ΔGHads, with values ranging between −0.27 and 0.09 eV. However, a graphene support doped with graphitic N atoms produces a ΔGHads value of exactly 0 eV, which is thermodynamically ideal for hydrogen evolution. Furthermore, ΔGHads is found to relate closely and linearly to the amount of charge transfer between MoS2 and support when they adhere together. The support-induced tuning of ΔGHads on MoS2 observed here provides a useful tool for improving current MoS2 catalysts, and the discovery of variables which mediate changes in ΔGHads contributes to the rational design of new hydrogen evolution catalysts.

Graphical abstract: Enhancing the hydrogen evolution activity of MoS2 basal planes and edges using tunable carbon-based supports

Supplementary files

Article information

Article type
Paper
Submitted
05 Oct 2020
Accepted
07 Dec 2020
First published
08 Dec 2020

Nanoscale, 2021,13, 3106-3118

Enhancing the hydrogen evolution activity of MoS2 basal planes and edges using tunable carbon-based supports

C. Ruffman, C. K. Gordon, J. T. A. Gilmour, F. D. Mackenzie and A. L. Garden, Nanoscale, 2021, 13, 3106 DOI: 10.1039/D0NR07100E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements