An enhanced plasmonic photothermal effect for crystal transformation by a heat-trapping structure†
Abstract
Photothermal utilization is an important approach for sustaining global ecological balance. Due to the enhancement of light absorption through surface plasmon resonance, silver or gold nanostructures can be used as efficient photothermal heat sources in visible and near-infrared regions. Herein, a heat-trapping system of self-assembled gold nanoislands with a thin Al2O3 layer is designed to significantly enhance the photothermal effect, which can contribute to a fast crystal transformation. Compared with pure gold nanoislands, an approximately 10-fold enhancement of the photothermal conversion efficiency is observed by using the heat-trapping layer, which results from enhanced light absorption and efficient heat utilization. With the heat-trapping layer, a relatively high and stable photothermal conversion efficiency is realized even at low temperature, and the thermal stability of the plasmonic nanostructure is also observed to improve, especially for silver nanoislands used in air. These results provide a strong additional support for the further development of photothermal applications and offer an efficient pathway for the thermal manipulation of plasmons at the nanoscale.