Catalytic oxidation of high-concentration CO over La0.9M0.1CoO3 (M = Ce, Sr) facilely promoted by glucose
Abstract
Glucose-free and glucose-containing LaCoO3(-G), La0.9Sr0.1CoO3(-G), and La0.9Ce0.1CoO3(-G) perovskite catalysts were synthesized via the sol–gel method, over which the oxidation performance of high-concentration CO was investigated. The experimental results indicate that the catalytic activity can be improved by facilely adding glucose during the preparation where glucose creates a reducing atmosphere and takes away the oxygen atoms of perovskites to form more oxygen vacancies and Co3+. CO self-sustained combustion is favorably achieved and La0.9Ce0.1CoO3-G shows the best catalytic performance. Combining the XPS, H2-TPR, O2-TPD and CO-TPD results, the outstanding performance of La0.9Ce0.1CoO3-G is mainly ascribed to the relatively higher concentrations of Co3+, Ce3+ and oxygen vacancies. The reaction was found to follow the Langmuir–Hinshelwood (L–H) mechanism by in situ IR spectroscopy and kinetic results. Furthermore, La0.9Ce0.1CoO3-G exhibits good high-temperature durability with unchanged CO conversion of 100% at 760 °C. It is suggested that the addition of glucose and the impregnation of Sr or Ce in perovskites is a feasible strategy to design industrial catalysts for CO self-sustained combustion.