Issue 13, 2021

Meso-tetra(4-sulfonatophenyl)porphyrin silver/Ag nanoparticles/graphene-phase C3N4 with a sandwich-like structure and double-faced active centers via two-step room-temperature photocatalytic synthesis for ractopamine detection

Abstract

Photochemical synthesis under visible light irradiation is a novel approach in the field of green chemistry, and composites with abundant active centers for electrochemical detection are highly attractive. Herein, a meso-tetra(4-sulfonatophenyl)porphyrin silver/Ag nanoparticles/graphene phase C3N4 nanosheets (Ag2TPPS4/AgNPs/ng-C3N4) material with a sandwich-like structure was synthesized using a two-step photocatalytic reaction at room temperature (25 °C). In the first visible light irradiation step and in the presence of a hole capture agent, Ag+ ions were photocatalytically reduced onto the surface of ng-C3N4 that was used as a photocatalyst. Then, the protons (H+) in the core of H2TPPS4 were substituted in situ by photo-oxidized Ag+ during the second visible light irradiation step and in the presence of an electron capture agent. The electrochemical response of Ag2TPPS4 and ng-C3N4 to ractopamine (RAC) results in the unique double-faced active centers of Ag2TPPS4/AgNPs/ng-C3N4, and the cores (AgNPs) are beneficial as bridges for the connection between Ag2TPPS4 and ng-C3N4 and for high-efficiency electron transfer. Hence, as-synthesized Ag2TPPS4/AgNPs/ng-C3N4 exhibits high sensitivity (a low detection limit of 5.1 × 10−8 M, S/N = 3.0), a wide linear range (1 × 10−7 to 1.2 × 10−5 M), and long-term stability. Based on the experimental verification of the electrochemical dynamics and electrostatic attraction at the interface between the dual-active-center surface and RAC, the electrochemical mechanism has been clarified. Specifically, in the multi-cycle oxidation of RAC, the blue shift of specific UV-vis peaks also confirms the electrocatalytic oxidation of the two terminal hydroxyl groups of RAC. In brief, Ag2TPPS4/AgNPs/ng-C3N4 with a sandwich-like structure and double-faced active centers enhances the detection sensitivity and electrocatalytic efficiency towards RAC.

Graphical abstract: Meso-tetra(4-sulfonatophenyl)porphyrin silver/Ag nanoparticles/graphene-phase C3N4 with a sandwich-like structure and double-faced active centers via two-step room-temperature photocatalytic synthesis for ractopamine detection

Supplementary files

Article information

Article type
Paper
Submitted
19 Feb 2021
Accepted
18 May 2021
First published
18 May 2021
This article is Open Access
Creative Commons BY license

Nanoscale Adv., 2021,3, 3900-3908

Meso-tetra(4-sulfonatophenyl)porphyrin silver/Ag nanoparticles/graphene-phase C3N4 with a sandwich-like structure and double-faced active centers via two-step room-temperature photocatalytic synthesis for ractopamine detection

X. Weng, H. Ye, W. Xie, M. Ying, H. Pan and M. Du, Nanoscale Adv., 2021, 3, 3900 DOI: 10.1039/D1NA00130B

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements