Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 3, 2021

Recent advances in plasmonic nanocavities for single-molecule spectroscopy

Author affiliations

Abstract

Plasmonic nanocavities are able to engineer and confine electromagnetic fields to subwavelength volumes. In the past decade, they have enabled a large set of applications, in particular for sensing, optical trapping, and the investigation of physical and chemical phenomena at a few or single-molecule levels. This extreme sensitivity is possible thanks to the highly confined local field intensity enhancement, which depends on the geometry of plasmonic nanocavities. Indeed, suitably designed structures providing engineered local optical fields lead to enhanced optical sensing based on different phenomena such as surface enhanced Raman scattering, fluorescence, and Förster resonance energy transfer. In this mini-review, we illustrate the most recent results on plasmonic nanocavities, with specific emphasis on the detection of single molecules.

Graphical abstract: Recent advances in plasmonic nanocavities for single-molecule spectroscopy

Article information


Submitted
26 Aug 2020
Accepted
04 Nov 2020
First published
05 Nov 2020

This article is Open Access

Nanoscale Adv., 2021,3, 633-642
Article type
Minireview

Recent advances in plasmonic nanocavities for single-molecule spectroscopy

N. Maccaferri, G. Barbillon, A. N. Koya, G. Lu, G. P. Acuna and D. Garoli, Nanoscale Adv., 2021, 3, 633 DOI: 10.1039/D0NA00715C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements