Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.



N-Glycosylation in isolated rat nerve terminals

Author affiliations

Abstract

N-linked glycosylation is a ubiquitous protein modification that is capable of modulating protein structure, function and interactions. Many proteins in the brain associated with the synapse and important for synaptic transmission are highly glycosylated and their glycosylation could be important for learning and memory related molecular processes and synaptic plasticity. In the present study, we extend the knowledge of the synaptic glycome and glycoproteome by performing glycan- and intact glycopeptide-focused analyses of isolated rat nerve terminals (synaptosomes) by LC-MS/MS. Overall, glycomics identified a total of 41 N-glycans in isolated synaptosomes. Sialylated N-glycans represented only 7% of the total abundance of the rat synaptosome N-glycome with oligomannose, neutral hybrid and complex type N-glycans being the most abundant structures. Using detergent extraction of the active zone proteins from the synaptosomes revealed a change in the active zone glycan abundance in comparison with the rest of the synaptosome glycan content. Characterization of intact sialylated N-linked glycopeptides enriched by titanium dioxide chromatography revealed more than 85% selectivity of sialylated species and the presence of NeuGc on active zone proteins. In addition, both disialic and trisialic acid modified glycans were present on synaptic glycoproteins, although oxonium ion profiling revealed that trisialic units were only present on glycoproteins in the detergent soluble fraction. However, correct identification of intact sialylated N-linked glycopeptides using the Byonic program failed, most likely due to the lack of peptide backbone fragmentation during tandem mass spectrometry.

Graphical abstract: N-Glycosylation in isolated rat nerve terminals

Supplementary files

Article information


Submitted
07 Apr 2020
Accepted
26 May 2021
First published
04 Jun 2021

Mol. Omics, 2021, Advance Article
Article type
Research Article

N-Glycosylation in isolated rat nerve terminals

I. Matthies, J. L. Abrahams, P. Jensen, T. Oliveira, D. Kolarich and M. R. Larsen, Mol. Omics, 2021, Advance Article , DOI: 10.1039/D0MO00044B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements