Bifunctional homologous alkali-metal artificial synapse with regenerative ability and mechanism imitation of voltage-gated ion channels
Abstract
As a key component responsible for information processing in the brain, the development of a bionic synapse possessing digital and analog bifunctionality is vital for the hardware implementation of a neuro-system. Here, inspired by the key role of sodium and potassium in synaptic transmission, the alkali metal element lithium (Li) belonging to the same family is adopted in designing a bifunctional artificial synapse. The incorporation of Li endows the electronic devices with versatile synaptic functions. An artificial neural network based on experimental data exhibits a high performance approaching near-ideal accuracy. In addition, the regenerative ability allows synaptic functional recovery through low-frequency stimuli to be emulated, facilitating the prevention of permanent damage due to intensive neural activities and ensuring the long-term stability of the entire neural system. What is more striking for an Li-based bionic synapse is that it can not only emulate a biological synapse at a behavioral level but realize mechanism emulation based on artificial voltage-gated “ion channels”. Concurrent digital and analog features lead to versatile synaptic functions in Li-doped artificial synapses, which operate in a mode similar to the human brain with its two hemispheres excelling at processing imaginative and analytical information, respectively.
 
                




 Please wait while we load your content...
                                            Please wait while we load your content...
                                        