Jump to main content
Jump to site search

Issue 8, 2021
Previous Article Next Article

Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors

Author affiliations

Abstract

Understanding competition and cooperation within microbiota is of high fundamental and clinical importance, helping to comprehend species' evolution and biodiversity. We co-encapsulated and cultured two isogenic Escherichia coli strains expressing blue (BFP) and yellow (YFP) fluorescent proteins into numerous emulsion droplets and quantified their growth by employing fluorescence measurements. To characterize and compare the bacterial growth kinetics and behavior in mono and co-culture, we compared the experimental observations with predictions from a simple growth model. Varying the initial ratio (R0) of both cell types injected, we observed a broad landscape from competition to cooperation between both strains in their confined microenvironments depending on start frequency: from a nearly symmetric situation at R0 = 1, up to the domination of one subpopulation when R0 ≫ 1 (or R0 ≪ 1). Due to competition between the strains, their doubling times and final biomass ratios (R1) continuously deviate from the monoculture behavior. The correlation map of the two strains' doubling times reveals that the R0 is one of the critical parameters affecting the competitive interaction between isogenic bacterial strains. Thanks to this strategy, different species of bacteria can be monitored simultaneously in real-time. Further advantages include high statistical output, unaffected bacteria growth, and long-time measurements in a well-mixed environment. We expect that the millifluidic droplet-based reactor can be utilized for practical clinical applications, such as bacterial antibiotic resistance and enzyme reaction kinetics studies.

Graphical abstract: Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors

Back to tab navigation

Supplementary files

Article information


Submitted
30 Nov 2020
Accepted
16 Mar 2021
First published
17 Mar 2021

Lab Chip, 2021,21, 1492-1502
Article type
Paper

Coexistence of fluorescent Escherichia coli strains in millifluidic droplet reactors

X. Zhao, R. Illing, P. Ruelens, M. Bachmann, G. Cuniberti, J. A. G. M. de Visser and L. Baraban, Lab Chip, 2021, 21, 1492
DOI: 10.1039/D0LC01204A

Social activity

Search articles by author

Spotlight

Advertisements