Issue 7, 2021

Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway

Abstract

Cerebral stroke, a common clinical problem, is the predominant cause of disability and death worldwide. Its prevalence increases and infarctions exacerbate with age. A Tibetan plant, Brassica rapa L., possesses multiple medicinal effects, such as anti-altitude sickness, anti-hyperlipidemia and anti-fatigue, as mentioned in the noted ancient Tibet pharmacopeia “The Four Medical Tantras”. Our preliminary studies also showed the anti-hypoxia protection mechanism of B. rapa L., implying its possible relationship with anti-ischemic neuroprotection. However, the potential molecular mechanism of the active constituent of turnip against cerebral ischemia/reperfusion remains unclear. In our study, oxidative stress markers, including LDH, ROS, SOD, GPx and CAT were assayed. In controlled in vitro assays, we found that the turnip's active constituent had remarkable anti-hypoxia capability. We further showed the profound effects of the active constituent of turnip on the levels of apoptosis-related proteins, including Bax, Bcl-2 and caspase-3, which contributed to its anti-inflammatory activity. Western blot analysis results also implied that active-constituent pretreatment reversed the diminished expression of the PI3K/Akt/mTOR pathway mediated by oxygen glucose deprivation/reperfusion (OGD/R); further experimental evidence showed that the protective role was limited in the PI3K inhibitor (LY294002) treatment group. Our results demonstrated that the functional monomer of B. rapa L. exerted a neuroprotective effect against OGD/R-induced HT22 cell injury, and its potential mechanism provides a scientific basis for future clinical applications and its use as a functional food.

Graphical abstract: Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway

Supplementary files

Article information

Article type
Paper
Submitted
06 Dec 2020
Accepted
09 Feb 2021
First published
12 Mar 2021

Food Funct., 2021,12, 2901-2913

Bioactive compound from the Tibetan turnip (Brassica rapa L.) elicited anti-hypoxia effects in OGD/R-injured HT22 cells by activating the PI3K/AKT pathway

H. Hua, H. Zhu, C. Liu, W. Zhang, J. Li, B. Hu, Y. Guo, Y. Cheng, F. Pi, Y. Xie, W. Yao and H. Qian, Food Funct., 2021, 12, 2901 DOI: 10.1039/D0FO03190A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements