Jump to main content
Jump to site search
SCHEDULED MAINTENANCE Close the message box

Maintenance work is planned for Monday 16 August 2021 from 07:00 to 23:59 (BST).

Website performance may be temporarily affected and you may not be able to access some PDFs or images. If this does happen, refreshing your web browser should resolve the issue. We apologise for any inconvenience this might cause and thank you for your patience.


Volume 228, 2021

Time-resolved imaging of correlation-driven charge migration in light-induced molecular magnets by X-ray scattering

Author affiliations

Abstract

In this contribution, we investigate the effect of correlation-induced charge migration on the stability of light-induced ring currents, with potential application as molecular magnets. Laser-driven electron dynamics is simulated using density-matrix based time-dependent configuration interaction. The time-dependent many-electron wave packet is used to reconstruct the transient electronic current flux density after excitation of different target states. These reveal ultrafast correlation-driven fluctuations of the charge migration over the molecular scaffold, sometimes leading to large variations of the induced magnetic field. The effect of electron correlation and non-local pure dephasing on the charge migration pattern is further investigated by means of time-resolved X-ray scattering, providing a connection between theoretical predictions of the charge migration mechanism and experimental observables.

Graphical abstract: Time-resolved imaging of correlation-driven charge migration in light-induced molecular magnets by X-ray scattering

Associated articles

Article information


Submitted
09 Oct 2020
Accepted
11 Dec 2020
First published
11 Dec 2020

Faraday Discuss., 2021,228, 82-103
Article type
Paper

Time-resolved imaging of correlation-driven charge migration in light-induced molecular magnets by X-ray scattering

J. C. Tremblay, V. Pohl, G. Hermann and G. Dixit, Faraday Discuss., 2021, 228, 82 DOI: 10.1039/D0FD00116C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.


Social activity

Search articles by author

Spotlight

Advertisements