Jump to main content
Jump to site search

Volume 226, 2021
Previous Article Next Article

Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing

Author affiliations

Abstract

Wintertime urban air pollution in many global megacities is characterised by episodic rapid increase in particulate matter concentrations associated with elevated relative humidity – so-called haze episodes, which have become characteristic of cities such as Beijing. Atmospheric chemistry within haze combines gas- and condensed-phase chemical processes, leading to the growth in secondary species such as sulphate aerosols. Here, we integrate observations of reactive gas phase species (HONO, OH, NOx) and time-resolved aerosol composition, to explore observational constraints on the mechanisms responsible for sulphate growth during the onset of haze events. We show that HONO abundance is dominated by established fast gas-phase photochemistry, but the consideration of the additional formation potentially associated with condensed-phase oxidation of S species by aqueous NO2 leading to NO2 production and hence HONO release, improves agreement between observed and calculated gas-phase HONO levels. This conclusion is highly dependent upon aerosol pH, ionic strength and particularly the parameterisation employed for S(IV) oxidation kinetics, for which an upper limit is derived.

Graphical abstract: Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing

Back to tab navigation

Associated articles

Supplementary files

Article information


Submitted
13 Aug 2020
Accepted
21 Sep 2020
First published
21 Sep 2020

This article is Open Access

Faraday Discuss., 2021,226, 223-238
Article type
Paper

Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing

W. J. Bloss, L. Kramer, L. R. Crilley, T. Vu, R. M. Harrison, Z. Shi, J. D. Lee, F. A. Squires, L. K. Whalley, E. Slater, R. Woodward-Massey, C. Ye, D. E. Heard, S. Tong, S. Hou, Y. Sun, J. Xu, L. Wei and P. Fu, Faraday Discuss., 2021, 226, 223
DOI: 10.1039/D0FD00100G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material.

Reproduced material should be attributed as follows:

  • For reproduction of material from NJC:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
  • For reproduction of material from PCCP:
    [Original citation] - Published by the PCCP Owner Societies.
  • For reproduction of material from PPS:
    [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
  • For reproduction of material from all other RSC journals:
    [Original citation] - Published by The Royal Society of Chemistry.

Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.


Social activity

Search articles by author

Spotlight

Advertisements