Issue 12, 2021

Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis

Abstract

Single-atom-catalysts (SACs) have recently gained significant attention in energy conversion/storage applications, while the low-loading amount due to their easy-to-migrate tendency causes a major bottleneck. For energy-saving H2 generation, replacing the sluggish oxygen evolution reaction with the thermodynamically favorable urea oxidation reaction (UOR) offers great promise, additionally mitigating the issue of urea-rich water contamination. However, the lack of efficient catalysts to overcome the intrinsically slow kinetics limits its scalable applications. Herein, we discover that incorporating tensile-strain on the surface of a Co3O4 (strained-Co3O4; S-Co3O4) support by the liquid N2-quenching method can significantly inhibit the migration tendency of Rh single-atoms (RhSA), thereby stabilizing an ∼200% higher loading of RhSA sites (RhSA-S-Co3O4; bulk loading ∼6.6 wt%/surface loading ∼11.6 wt%) compared to pristine-Co3O4 (P-Co3O4). Theoretical calculations revealed a significantly increased migration energy barrier of RhSA on the S-Co3O4 surface than on P-Co3O4, inhibiting their migration/agglomeration. Surprisingly, RhSA-S-Co3O4 exhibited exceptional pH-universal UOR activity, requiring record-low working potentials and surpassing Pt/Rh-C, this was due to superior urea adsorption and stabilization of CO*/NH* intermediates, revealed by DFT simulations. Meanwhile, the assembled urea-electrolyzer delivered 10 mA cm−2 at only 1.33 V with robust stability in alkaline media. This work provides a general methodology towards high-loading SACs for scalable applications.

Graphical abstract: Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2021
Accepted
22 Sep 2021
First published
30 Sep 2021

Energy Environ. Sci., 2021,14, 6494-6505

Discovering ultrahigh loading of single-metal-atoms via surface tensile-strain for unprecedented urea electrolysis

A. Kumar, X. Liu, J. Lee, B. Debnath, A. R. Jadhav, X. Shao, V. Q. Bui, Y. Hwang, Y. Liu, M. G. Kim and H. Lee, Energy Environ. Sci., 2021, 14, 6494 DOI: 10.1039/D1EE02603H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements