Issue 1, 2021

Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution

Abstract

Hydrogen economy by water splitting is the indispensable cornerstone for sustainable energy yet it is impeded by sluggish anodic water oxidation. Hence, the rational design of highly efficient electrocatalysts for oxygen evolution is the key to unlocking its wider use. Herein, cobalt–iron selenide nanoframes are reported for the efficient water oxidation, which need only 270 mV overpotential to give a 10 mA cm−2 current density and outperforms most cobalt-based catalysts, and even the benchmarked commercial ruthenium oxides (RuO2). More profoundly, iron doping regulates the local spin state of cobalt species, which further accelerates charge transfer and formation of oxygenated intermediates, and consequently contributes to the enhanced oxygen evolution. This work demonstrates a highly efficient oxygen evolution electrocatalyst and may pioneer a promising approach which involves tuning the local electronic structure to achieve the improved electrocatalysis activities in energy conversion technologies.

Graphical abstract: Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution

Supplementary files

Article information

Article type
Communication
Submitted
04 Nov 2020
Accepted
22 Dec 2020
First published
23 Dec 2020

Energy Environ. Sci., 2021,14, 365-373

Local spin-state tuning of cobalt–iron selenide nanoframes for the boosted oxygen evolution

J. Zhang, Y. Yan, B. Mei, R. Qi, T. He, Z. Wang, W. Fang, S. Zaman, Y. Su, S. Ding and B. Y. Xia, Energy Environ. Sci., 2021, 14, 365 DOI: 10.1039/D0EE03500A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements