Issue 38, 2021

The controlling role of atmosphere in dawsonite versus gibbsite precipitation from tetrahedral aluminate species

Abstract

In highly alkaline solution, aluminum speciates as the tetrahedrally coordinated aluminate monomer, Al(OH)4 and/or dimer Al2O(OH)62−, yet precipitates as octahedrally coordinated gibbsite (Al(OH)3). This tetrahedral to octahedral transformation governs Al precipitation, which is crucial to worldwide aluminum (Al) production, and to the retrieval and processing of Al-containing caustic high-level radioactive wastes. Despite its significance, the transformation pathway remains unknown. Here we explore the roles of atmospheric water and carbon dioxide in mediating the transformation of the tetrahedrally coordinated potassium aluminate dimer salt (K2Al2O(OH)6) to gibbsite versus potassium dawsonite (KAl(CO3)(OH)2). A combination of in situ attenuated total reflection infrared spectroscopy, ex situ micro X-ray diffraction, and multivariate curve resolution-alternating least squares chemometrics analysis reveals that humidity plays a key role in the transformation by limiting the amount of alkalinity neutralization by dissolved CO2. Lower humidity favors higher alkalinity and incorporation of carbonate species in the final Al product to form KAl(CO3)(OH)2. Higher humidity enables more acid generation that destabilizes dawsonite and favors gibbsite as the solubility limiting phase. This indicates that the transition from tetra- to octahedrally coordinated Al does not have to occur in bulk solution, as has often been hypothesized, but may instead occur in thin water films present on mineral surfaces in humid environments. Our findings suggest that phase selection can be controlled by humidity, which could enable new pathways to Al transformations useful to the Al processing industry, as well as improved understanding of phases that appear in caustic Al-bearing solutions exposed to atmospheric conditions.

Graphical abstract: The controlling role of atmosphere in dawsonite versus gibbsite precipitation from tetrahedral aluminate species

Supplementary files

Article information

Article type
Paper
Submitted
22 Jun 2021
Accepted
25 Aug 2021
First published
03 Sep 2021

Dalton Trans., 2021,50, 13438-13446

Author version available

The controlling role of atmosphere in dawsonite versus gibbsite precipitation from tetrahedral aluminate species

M. Dembowski, J. S. Loring, M. E. Bowden, J. G. Reynolds, T. R. Graham, K. M. Rosso and C. I. Pearce, Dalton Trans., 2021, 50, 13438 DOI: 10.1039/D1DT02081A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements