Sandwich-like SnS2/graphene multilayers for efficient lithium/sodium storage†
Abstract
2D materials have attracted extensive attention in energy storage and conversion due to their excellent electrochemical performances. Herein, we report utilization of monolayer SnS2 sheets within SnS2/graphene multilayers for efficient lithium and sodium storage. SnS2/graphene multilayers are synthesized through a solution-phase direct assembly method by electrostatic interaction between monolayer SnS2 and PDDA (polydimethyl diallyl ammonium chloride)-graphene nanosheets. It has been shown that the SnS2/graphene multilayer electrode has a large pseudocapacity contribution for enhanced lithium and sodium storage. Typical batteries deliver a stable reversible capacity of ∼160 mA h g−1 at 2 A g−1 after 2000 cycles for lithium and a stable reversible capacity of ∼142 mA h g−1 at 1 A g−1 after 1000 cycles for sodium. The excellent electrochemical performances of SnS2/graphene multilayers are attributed to the synergistic effect between the monolayer SnS2 sheets and the PDDA-graphene nanosheets. The multilayer structure assembled by different monolayer nanosheets is promising for the further development of 2D materials for energy storage and conversion.

Please wait while we load your content...