Issue 18, 2021

A novel series of giant cobalt-calixarene macrocycles: ring-expansion and modulation of pore apertures through recrystallization

Abstract

The design and synthesis of metallomacrocycles can be quite challenging because the assemblies of such molecular cycles are difficult to control and the products are usually unpredictable. In this work, a novel series of metallomacrocycles, denoted as {Co30-A}, {Co30-B} and {Co32-A} have been synthesized via self-assembly of p-tert-butylthiacalix[4]arene (H4TC4A) and 3,5-pyrazoledicarboxylic acid (H3pdc) with Co2+ ions under solvothermal conditions. Recrystallization of {Co32-A} under different conditions was found to form {Co32-B} and {Co32-C} that have a similar ring structure to that of {Co32-A} but have different molecular packing modes in the lattices, as well as a 40-membered ring {Co40}. These complexes represent the highest-nuclearity metallocalixarene coordination wheels reported to date. Crystallographic studies indicate that all these metallomacrocycles feature wheel-like structures with apertures varing from 11.4 to 20.3 Å. It is noteworthy that {Co32-A} exhibited good efficiency in removing RhB even at low initial concentration (10 ppm) and also excellent adsorption selectivity towards RhB over Na2Fl (RhB = Rhodamine B, Na2Fl = disodium fluorescein). This work not only makes a breakthrough in the synthesis of metallocalixarene macrocycles with high nuclearity and large apertures, but also provides a simple recrystallization approach to realize the ring-expansion and regulation of molecular packing modes of the metallomacrocycles.

Graphical abstract: A novel series of giant cobalt-calixarene macrocycles: ring-expansion and modulation of pore apertures through recrystallization

Supplementary files

Article information

Article type
Paper
Submitted
18 Feb 2021
Accepted
13 Apr 2021
First published
15 Apr 2021

Dalton Trans., 2021,50, 6181-6187

A novel series of giant cobalt-calixarene macrocycles: ring-expansion and modulation of pore apertures through recrystallization

K. Zhang and S. Du, Dalton Trans., 2021, 50, 6181 DOI: 10.1039/D1DT00556A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements