Issue 15, 2021

Bright bluish-green emitting Cu(i) complexes exhibiting efficient thermally activated delayed fluorescence

Abstract

Three strongly emissive Cu(I) complexes [Cu(tBupzmpy)(POP)]BF4(1), [Cu(Phpzmpy)(POP)]BF4(2) and [Cu(Adpzmpy)(POP)]BF4(3) (tBupzmpy = 2-(5-(tert-butyl)-1H-pyrazol-3-yl)-6-methylpyridine, Phpzmpy = 2-methyl-6-(5-phenyl-1H-pyrazol-3-yl)pyridine, Adpzmpy = 2-(5-((3R,5R)-adamantan-1-yl)-1H-pyrazol-3-yl)-6-methylpyridine, and POP = bis[2-(diphenylphosphino)phenyl]ether) were synthesized and characterized. These complexes exhibit bright bluish-green photoluminescence in the solid state with quantum yields of 91% (1), 71% (2) and 77% (3) and lifetimes of 13.4 μs (1), 32.9 μs (2) and 34.1 μs (3) at room temperature. The results of theoretical calculations, coupled with the temperature dependence of the spectroscopic properties and emission decay behaviors, reveal that the title Cu(I) complexes emit efficient thermally activated delayed fluorescence (TADF) from excited states involving metal-to-ligand charge transfer (MLCT) transitions and ligand-to-ligand charge transfer (LLCT) transitions. The emissive-state characteristics and emission properties of the investigated Cu(I) complexes were tuned effectively by changing the steric and electronic structures of the diimine ligands.

Graphical abstract: Bright bluish-green emitting Cu(i) complexes exhibiting efficient thermally activated delayed fluorescence

Supplementary files

Article information

Article type
Paper
Submitted
31 Dec 2020
Accepted
05 Mar 2021
First published
08 Mar 2021

Dalton Trans., 2021,50, 5171-5176

Bright bluish-green emitting Cu(I) complexes exhibiting efficient thermally activated delayed fluorescence

C. Huang, M. Yang, X. Chen and C. Lu, Dalton Trans., 2021, 50, 5171 DOI: 10.1039/D0DT04424E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements