Issue 19, 2021

Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide

Abstract

Graphitic carbon nitride (g-C3N4) is a promising two-dimensional semiconducting material that has shown potential for various applications in the field of photocatalysts due to its thermal stability and excellent electronic properties. However, pristine g-C3N4 has a wide optical band gap, which limits the active absorption of solar light in the spectral region below 420 nm. One way to improve the optical character is by doping with a sulfur heteroatom to make sulfur-doped g-C3N4 (S-g-C3N4), which has a smaller band gap relative to the pristine g-C3N4. Herein, we have developed a new type of S-g-C3N4 composite incorporating eosin-Y (EY–S-g-C3N4) by employing the co-polymerization approach between eosin-Y (EY) and S-g-C3N4. In this composite, eosin-Y moieties act as external photosensitizing groups. The optical characteristics of EY–S-g-C3N4 were investigated using density functional theory, various optical spectroscopies, and various imaging techniques. From those characterizations, it was found that the appearance of the charge-transfer state in the low band gap regime improved the light-harvesting ability relative to the g-C3N4 and S-g-C3N4. The use of the EY–S-g-C3N4 photocatalyst for the regeneration of NADH and NADPH showed quite excellent efficiencies of 64.38% and 81.14%, respectively. In addition, it showed the high conversion efficiency of sulfide to sulfoxide with an yield of 99.6%. This research highlights the potential application of the EY–S-g-C3N4 composite in the field of organic transformation based on photoinduced conversion.

Graphical abstract: Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2021
Accepted
12 Aug 2021
First published
25 Aug 2021

Catal. Sci. Technol., 2021,11, 6401-6410

Eosin-Y and sulfur-codoped g-C3N4 composite for photocatalytic applications: the regeneration of NADH/NADPH and the oxidation of sulfide to sulfoxide

P. Singh, R. K. Yadav, K. Kumar, Y. Lee, A. K. Gupta, K. Kumar, B. C. Yadav, S. N. Singh, D. K. Dwivedi, S. Nam, A. P. Singh and T. W. Kim, Catal. Sci. Technol., 2021, 11, 6401 DOI: 10.1039/D1CY00991E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements